
OntoTrace: a Tool for Supporting Trace Generation in

Software Development by using Ontology-based

Automatic Reasoning

David Mosquera1[0000-0002-0552-7878], Marcela Ruiz1[0000-0002-0592-1779], Oscar Pastor2[0000-

0002-1320-8471], Jürgen Spielberger1[0000-0003-2617-3535], and Lucas Fievet3

1 Zürich University of Applied Sciences, Gertrudstrasse 15, Winterthur 8400, Switzerland

{mosq, ruiz, spij}@zhaw.ch

2 PROS-VRAIN: Valencian Research Institute for Artificial Intelligence - Universitat Politèc-

nica de València, València, Spain
opastor@dsic.upv.es

3 LogicFlow AG, Butzenstrasse 130, Zürich 8041, Switzerland
lucas@logicflow.ai

Abstract. Traceability in software development has gained interest due to its

software maintainability and quality assurance benefits. Artifacts such as code,

requirements, mockups, test cases, among others, are feasible trace sources/tar-

gets during the software development process. Existing scientific approaches

support tasks like identifying untraced artifacts, establishing new traces, and val-

idating existing traces. However, most approaches require input existing tracea-

bility data or are restricted to a certain application domain hindering their practi-

cal application. This contemporary challenge in information systems engineering

calls for novel traceability solutions. In this paper, we present OntoTrace: a tool

for supporting traceability tasks in software development projects by using on-

tology-based automatic reasoning. OntoTrace allows software development

teams for inferring traceability-related data such as i) which are the traceable

source/target artifacts; ii) which artifacts are not yet traced; and iii) given a spe-

cific artifact, which are the possible traces between it and other artifacts. We

demonstrate how OntoTrace works in the context of the Swiss startup LogicFlow

AG, supporting the traceability between functional/non-functional requirements

and user interface test cases. We conclude the paper by reflecting on the experi-

ence from applying the approach in practice, and we draw on future challenges

and next research endeavors.

Keywords: Software traceability, Ontology, Automatic reasoning, Trace gener-

ation, Software traceability tool.

1 Introduction

Traceability in software development refers to creating traces between software arti-

facts [1]. A trace is a triplet comprising a source artifact, a target artifact, and a trace

link [2]. Such artifacts include source code, requirements, mockups, test cases, among

This version is a pre-print. Please refear to the publisher (Springer)
to access the post-edition paper version here: https://doi.org/10.1007/978-3-031-07481-3_9

How to cite:
Mosquera, D., Ruiz, M., Pastor, O., Spielberger, J., Fievet, L. (2022).
OntoTrace: A Tool for Supporting Trace Generation in Software Development by
Using Ontology-Based Automatic Reasoning. In: De Weerdt, J., Polyvyanyy, A.
(eds) Intelligent Information Systems. CAiSE 2022. Lecture Notes in Business
Information Processing, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-031-07481-3_9

mailto:mosq
mailto:ruiz
mailto:opastor@dsic.upv.es

2

others. Keeping traceability between software artifacts facilitates quality-assurance-re-

lated tasks such as maintenance, verification, and validation tasks, which are regular

practices in information systems engineering [3, 4]. In practice, the effort required to

maintain, validate, and generate traces between artifacts outweighs traceability benefits

[5]. Therefore, some authors propose novel approaches that allow software develop-

ment teams to create traces between artifacts [5–13]. Although such approaches are

helpful, some of them require as input existing traceability data sets or existing traces

between artifacts [5, 6, 8, 11], hindering their practical applicability by software devel-

opment teams that do not currently trace their artifacts. On the other hand, other ap-

proaches limit their scope to specific artifacts [7, 9, 10, 12, 13], lacking generality.

In this paper, we propose OntoTrace: an ontology-based automatic reasoning tool

for supporting trace generation in software development projects. OntoTrace uses soft-

ware development teams’ context-dependent traceability ontology, representing their

specific context source/target artifacts and their traces. Moreover, our approach support

software development teams when defining traceability links without relying on histor-

ical traceability data sets or limiting their scope to tracing specific software artifacts.

Then, software development teams can use OntoTrace to infer traceability-related in-

formation such as: i) which are the traceable source/target artifacts; ii) which artifacts

are not yet traced; and iii) given a specific artifact, which are the possible traces between

it and other artifacts.

To evaluate the feasibility of our approach and exemplify its application, we instan-

tiate our approach in the context of a real-world use case at LogicFlow AG: a Swiss

startup that has a traceability gap between functional/non-functional requirements and

test scenarios—mainly focused on user interface (UI) test cases. We present the use of

OntoTrace by using the LogicFlow AG’s traceability ontology, an automatic reasoner,

and a graph-like UI to visualize software artifacts and traces. We show that OntoTrace

allows for establishing and discovering traceability links. Furthermore, we discuss the

next research challenges to a complete technology transference.

The paper is structured as follows: in Section 2, we review the related works; in

Section 3, we set up the running example describing a use case at LogicFlow AG; in

Section 4, we introduce OntoTrace in the context of our running example; and, finally,

in Section 5 we discuss conclusions and future work.

2 Related Work

Trace generation and discovery have gained researchers’ attention, generating novel

and tool-supported approaches. Some authors propose historic-data-based approaches

such as artificial neural networks [5, 8], Bayes classifier [13], and similarity-based al-

gorithms [6] for automatically creating traces between artifacts. However, such pro-

posals require large and well-labeled training data sets based on historical traceability

data, which are not always available. This represents an entry barrier for software de-

velopment teams that currently do not trace their artifacts.

On the other hand, some authors propose approaches that do not rely on historical-

traceability data sets, such as domain ontology-based recommendation systems [7, 13],

3

pattern languages [9], expert systems [10], and metamodel-based ontologies [12]. Nev-

ertheless, such approaches are limited to generating traces on the specific artifact, lack-

ing generality. Some proposals [7, 8, 10] limit their source/target artifacts to text-based

artifacts—e.g., such as textual requirements, source code, and standard norm docu-

ments. Therefore, mockups, models, UIs, and other non-textual artifacts are beyond

their scope. Similarly, other approaches limit their artifacts to model-based artifacts

[12], requirements [9, 13], and source code [9, 11, 13].

To address the gaps mentioned above, we propose an ontology-based automatic rea-

soning tool named OntoTrace that does not rely on historical-traceability data and is

not restricted to a specific set of traceable artifacts. Although some authors base their

approach on ontologies [7, 10, 12, 13], the sources describing their proposed ontologies

are not available for reusing them. Therefore, OntoTrace also relies on a context-inde-

pendent traceability ontology, making the sources available for reuse.

3 Running Example: LogicFlow AG case

In the rest of this paper, we will use as a running example the LogicFlow AG case, a

Swiss startup whose main objective is to provide a platform to facilitate the generation

of UI testing in software development projects. Currently, LogicFlow AG has a web

platform that allows testers to record test scenarios of web-based applications (see Fig.

1). Such test scenarios are automatically transformed into Selenium Script [14], a do-

main-specific language used for modeling and executing UI test cases. Moreover,

LogicFlow AG’s platform automatically identifies changes in the UIs, comparing cur-

rent web-based application version screenshots with former web-based application ver-

sion screenshots—we refer to this module as UI automatic change identifier (UI-ACI)

from now on. Despite the usefulness of the LogicFlow AG platform, startup members

have identified that web-based application requirements are hardly traceable to the test

scenarios. Such traceability gap hinders the maintainability of test scenarios, increasing

the tester’s effort to keep them consistent with the requirements. In Fig. 1, we show the

LogicFlow AG platform setup and the missing traces between artifacts.

Fig. 1. LogicFlow AG platform setup and missing traces between artifacts.

For instance, a use case where such traceability gap is evident is the following: A

Swiss insurance company wants to use the LogicFlow AG platform to generate test

scenarios based on their web-based application for calculating insurance premiums.

Therefore, the Swiss insurance company’s testers create a test scenario based on the

4

company’s requirements—i.e., the source artifacts—by using the LogicFlow AG plat-

form. As a result, the testers create one test scenario comprising 63 Selenium Script

commands. Moreover, the testers run the test scenario and compare the web-based ap-

plication versions using the UI-ACI. Then, the LogicFlow AG platform’s UI-ACI au-

tomatically identifies nine changes in the UI. As a result of using the LogicFlow AG

platform, the testers have a set of 72 target artifacts in one test scenario. However, up

to this point, the testers do not have any trace between the requirements and the test

scenario, hindering the test scenario’s maintainability. In Section 4, we show how this

problematic case can improve by using OntoTrace.

4 OntoTrace: enabling ontology-based automatic

reasoning for supporting trace generation in software

development

In this section, we introduce OntoTrace and exemplify it through the running example.

OntoTrace allows software development teams to infer traces among software artifacts

using ontology-based automatic reasoning. To do so, OntoTrace relies on a domain-

independent traceability ontology that has its foundation on general traceability defini-

tions taken from [1, 2, 15], having terms as: trace, artifact, source artifact, target artifact,

and traceability link. Therefore, as the first step to using OntoTrace, software develop-

ment teams should extend such traceability ontology to their specific contexts. We fully

extended the traceability ontology to the context of LogicFlow AG, including describ-

ing the source artifacts, target artifacts, and the traces between them. However, for the

sake of space, in this paper, we show an excerpt of such extension (see Fig. 2).

Fig. 2. Excerpt of the OntoTrace traceability ontology extension in the context of

LogicFlow AG.

First, we extend the traceability ontology’s source and target artifacts based on the

LogicFlow AG context, having requirements as source artifacts and test scenarios as

target artifacts. We continue increasing the class hierarchy until we identify two arti-

facts: non-functional requirement check texts as source artifacts and SeleniumScript

execute commands as target artifacts. Check text is a non-functional requirement that

checks if a text in a UI matches a specific format, font, or size. On the other hand,

5

LogicFlow AG testers use the SeleniumScript execute command to verify such non-

functional requirements in a test scenario. Thus, the trace between check text and exe-

cute command arises between these artifacts.

Having defined the traceability ontology extension to a specific context, software

development teams should use a computational-readable knowledge representation lan-

guage as OWL (Ontology Web Language) [16] to describe such extended ontology.

Software development teams can use OWL editors such as Protégé [17] to generate an

OWL file describing the ontology. This OWL file is the primary input to use OntoTrace.

Then, OntoTrace process the OWL file containing the context-dependent ontology by

using three main modules: i) the automatic reasoner, ii) the SPARQL query engine, and

iii) the trace graph-like visualizer (see Fig. 3).

Fig. 3. OntoTrace overview.

To develop the OntoTrace modules, we use Apache Jena [18], a free-open-source

Java framework for building ontology-based applications. Apache Jena allows us to

integrate and develop the first two OntoTrace modules: the automatic reasoner and the

SPARQL query engine. We select Pellet [19] as the OWL-based reasoner, allowing for

inferring traceability-related data automatically from the context-dependent ontology.

Then, we design a set of SPARQL queries to access the inferred data from the automatic

reasoner. Apache Jena provides a default SPARQL query engine to execute such que-

ries. For the sake of space, we do not show the SPARQL queries in this paper. However,

we create a public GitHub repository1 containing all the OWL files with the traceability

ontology, the SPARQL queries, and the source code of OntoTrace.

After executing the SPARQL queries, the SPARQL query engine retrieves text-for-

matted triplets. However, we noticed that having just text-based information hinders

the tool’s usability. Therefore, we create a graph-like visualizer by using JgraphX [20]

that allows software development teams for visualizing the following information: i)

all the source/target artifact; ii) which artifacts are untraced; ii) possible traces between

artifacts resulting from the automatic reasoning; and iv) the existing traces between

artifacts. Thus, OntoTrace allows software development teams to generate traces be-

tween artifacts by using the information inferred through ontology-based automatic rea-

soning.
We test OntoTrace by using the Swiss insurance company use case in the context of

LogicFlow AG. In the current status of OntoTrace, we manually create the source

1 https://github.com/DavidMosquera/TraceabilityOntology

6

artifact individual instances, describing the functional and non-functional requirements.

We do the same with the target artifacts, creating the individual instances that describe

the test scenario. We manually populate all the ontology with individuals since Onto-

Trace is not yet integrated with the LogicFlow AG platform. However, in further ver-

sions of OntoTrace, we will automate populating the ontology individuals. After creat-

ing such individual instances, OntoTrace allows testers to generate the traces between

the requirements and the test scenario based on the automatic reasoner inferred infor-

mation. We show in Fig. 4 an excerpt of such information regarding the Swiss insurance

company use case, showing the possible traces between a non-functional requirement

check text and target artifacts in the test scenario.

Fig. 4. Excerpt of OntoTrace showing the inferred use case information, representing

the source artifacts as white boxes and the target artifacts as black boxes.

7

5 Conclusions and Further Work

Trace generation between software development artifacts benefits quality assurance

and software maintenance [3, 4]. However, the effort required to generate such traces

outweighs traceability-related benefits [5]. In this paper, we reviewed some approaches

in the literature for supporting trace generation. Although such approaches are helpful,

we observed some of them require historical traceability data, hindering their imple-

mentation by software development teams that do not currently trace their artifacts. On

the other hand, some approaches lack generality, limiting the set of possible traceable

artifacts. Consequently, in this paper, we proposed an ontology-based automatic rea-

soning tool for supporting trace generation named OntoTrace, which addresses the gaps

mentioned above.

OntoTrace requires that software development teams extend a traceability ontology

based on general traceability definitions in the literature to their software development

context. Thus, software development teams describe context-dependent artifacts such

as requirements, source code, test cases, among others, and the traces between them.

Then, software development teams can use such ontology together with OntoTrace to

automatically infer traceability information such as: i) which are the traceable

source/target artifacts; ii) which artifacts are not yet traced; and iii) given a specific

artifact, which are the possible traces between it and other artifacts. In this paper, we

showed how OntoTrace is successfully implemented by using a running example: a

Swiss startup named LogicFlow AG aiming to fulfill the traceability gap between func-

tional/non-functional requirements and UI test cases.

As future research steps, we expect to extend OntoTrace in other directions. As the

first remark, OntoTrace depends on several external tools such as Protégé, Pellet, and

JgraphX. In practice, we should provide a workspace that integrates all the OntoTrace

functionalities, aiming to automate steps of our approach, e.g., automatically creating

individual instances. Moreover, as traces between artifacts evolve, we will include new

techniques—such as machine learning algorithms—for automatically devising new

traceability links while the software development team uses OntoTrace. Such tech-

niques will support software development teams to maintain the context-dependent

traceability ontology over time. Finally, other steps such as the user interaction design

and empirical validation should be performed in future research endeavors.

Acknowledgments

This work has been supported by the Zürich University of Applied Sciences (ZHAW)

– School of Engineering: Institute for Applied Information Technology (InIT). Moreo-

ver, we would like to thank LogicFlow AG for collaborating with us on providing data,

time, and ideas during the development of this research.

8

References

1. Charalampidou, S., Ampatzoglou, A., Karountzos, E., Avgeriou, P.: Empirical studies on soft-

ware traceability: A mapping study. Journal of Software: Evolution and Process. 33, (2021).

2. Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability. Springer, Lon-

don (2012).

3. Antoniol, G., Canfora, G., de Lucia, A.: Maintaining traceability during object-oriented soft-

ware evolution: a case study. In: Proceedings IEEE International Conference on Software

Maintenance - 1999 (ICSM’99). pp. 211–219. IEEE (1999).

4. Sundaram, S.K., Hayes, J.H., Dekhtyar, A., Holbrook, E.A.: Assessing traceability of software

engineering artifacts. Requirements Engineering. 15, 313–335 (2010).

5. Lin, J., Liu, Y., Zeng, Q., Jiang, M., Cleland-Huang, J.: Traceability Transformed: Generating

More Accurate Links with Pre-Trained BERT Models. In: 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE). pp. 324–335. IEEE (2021).

6. Javed, M.A., UL Muram, F., Zdun, U.: On-Demand Automated Traceability Maintenance and

Evolution. In: Lecture Notes in Computer Science. pp. 111–120. Springer Verlag (2018).

7. Huaqiang, D., Hongxing, L., Songyu, X., Yuqing, F.: The Research of Domain Ontology Rec-

ommendation Method with Its Applications in Requirement Traceability. In: 2017 16th Inter-

national Symposium on Distributed Computing and Applications to Business, Engineering and

Science (DCABES). pp. 158–161. IEEE (2017).

8. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically Enhanced Software Traceability Using

Deep Learning Techniques. In: 2017 IEEE/ACM 39th International Conference on Software

Engineering (ICSE). pp. 3–14. IEEE (2017).

9. Javed, M.A., Stevanetic, S., Zdun, U.: Towards a pattern language for construction and mainte-

nance of software architecture traceability links. In: Proceedings of the 21st European Confer-

ence on Pattern Languages of Programs. pp. 1–20. ACM, New York, NY, USA (2016).

10. Guo, J., Cleland-Huang, J., Berenbach, B.: Foundations for an expert system in domain-spe-

cific traceability. In: 2013 21st IEEE International Requirements Engineering Conference

(RE). pp. 42–51. IEEE (2013).

11. Nagano, S., Ichikawa, Y., Kobayashi, T.: Recovering Traceability Links between Code and

Documentation for Enterprise Project Artifacts. In: 2012 IEEE 36th Annual Computer Soft-

ware and Applications Conference. pp. 11–18. IEEE (2012).

12. Narayan, N., Bruegge, B., Delater, A., Paech, B.: Enhanced traceability in model-based CASE

tools using ontologies and information retrieval. In: 2011 4th International Workshop on Man-

aging Requirements Knowledge. pp. 24–28. IEEE (2011).

13. Hayashi, S., Yoshikawa, T., Saeki, M.: Sentence-to-Code Traceability Recovery with Domain

Ontologies. In: 2010 Asia Pacific Software Engineering Conference. pp. 385–394. IEEE

(2010).

14. Selenium - Domain Specific Language, https://www.selenium.dev/documentation/guide-

lines/domain_specific_language/, last accessed 2021/11/29.

15. Guo, J., Monaikul, N., Cleland-Huang, J.: Trace links explained: An automated approach for

generating rationales. In: 2015 IEEE 23rd International Requirements Engineering Conference

(RE). pp. 202–207. IEEE (2015).

16. Web Ontology Language (OWL), https://www.w3.org/OWL/, last accessed 2021/11/29.

17. Protégé ontology editor, https://www.w3.org/2001/sw/wiki/Protege, last accessed 2021/11/29.

18. Apache Jena Home Page, https://jena.apache.org/, last accessed 2021/11/29.

19. Pellet OWL reasoner, https://www.w3.org/2001/sw/wiki/Pellet, last accessed 2021/11/29.

20. JgraphX github repository, https://github.com/jgraph/jgraphxm, last accessed 2021/11/29.

https://www.w3.org/2001/sw/wiki/Pellet

