
Experiences from Developing a Web Crawler using a

Model-driven Development Tool: Emerging

Opportunities

David Mosquera[0000-0002-0552-7878] ✉, Anastassios Martakos, and Marcela Ruiz[0000-0002-

0592-1779]

1 Zürich University of Applied Sciences, Gertrudstrasse 15, Winterthur 8400, Switzerland

{mosq, ruiz}@zhaw.ch, martaana@students.zhaw.ch

Abstract. Model-driven development (MDD) tools aim to increase software de-

velopment speed and decrease software time-to-market. Available MDD tools in

the market state that software development teams can fast and easily develop

“any” software by using them. So, the following research question arises: what

is the perception of a software developer in using an MDD tool to create software

he/she is used to develop without models? We selected Mendix, a user-friendly

and easy configurable MDD tool, to address such a question and develop a do-

main-specific software artifact. We propose a use case collaborating with a Swiss

company that allows users to compare insurances based on web crawling. There-

fore, we ask a software developer at the Swiss company to develop a simplified

version of a web crawler using the selected MDD tool. The software developer

has extensive experience with developing web crawlers. However, for the soft-

ware developer using MDD tools was a new paradigm of software development.

We observe that the software developer successfully developed the web crawler

using the MDD tool. However, he/she perceived some difficulties during the de-

velopment, arising opportunities such as decreasing modeling complexity, in-

creasing the MDD tool integrability, and improving modeling assistance. Finally,

we conclude the experience report by drawing next research endeavors to gener-

alize the results and discover new opportunities for improving MDD tools.

Keywords: Model-driven development, Web crawling, Experience report.

1 Introduction

Model-driven development (MDD) tools promise to increase the productivity of soft-

ware development teams and decrease software time-to-market [1]. Thus, software de-

velopment teams invest their effort in creating conceptual models that describe the un-

der-development software application rather than coding. Then, an MDD tool allows

them to automatically transform such conceptual models into code using automatic

model-to-model and model-to-text transformations.

Several MDD tools are available in the market [2–6] and literature [7–10] aiming to

achieve the MDD “promise.” These tools state that software development teams can

This version is a pre-print. Please refear to the publisher (Springer) to access the post-edition paper version here: https://
https://doi.org/10.1007/978-3-031-07475-2_23

How to cite: Mosquera, D., Martakos, A., Ruiz, M. (2022). Experiences from Developing a Web Crawler Using a Model-
Driven Development Tool: Emerging Opportunities. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I.,
Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2022 2022.
Lecture Notes in Business Information Processing, vol 450. Springer, Cham. https://
doi.org/10.1007/978-3-031-07475-2_23

mailto:mosq
mailto:ruiz
mailto:%7d@zhaw.ch

2

fast and easily develop software by using them. Based on such a statement, a software

developer should be able to develop most of the functionalities as he/she uses to develop

using other approaches. So, the following research question arises: what is the percep-

tion of a software developer in using an MDD tool to develop software he/she is used

to developing without models?

We design a use case collaborating with a Swiss company to address our research

question. This company allows users to compare insurance premiums from several in-

surance providers using web crawling. Web crawling allows for automatically extract-

ing data from websites using software [11]. As a result, web crawlers gather details

from web pages in near real-time to present them to the user in a single source summa-

rized way. Developing web crawlers require domain-specific knowledge, making it a

relevant domain for addressing our research question. Moreover, we select Mendix—

one of the MDD tool market leaders—to develop the use case [6] and test our research

question.

We ask an experienced software developer at the Swiss company to develop the de-

signed use case using Mendix. The software developer has extensive experience with

developing web crawlers. However, for the software developer using MDD tools was

a new paradigm of software development. We document all the use case development,

observing that the software developer successfully developed a simplified web crawler

using Mendix. However, he/she perceived some difficulties using Mendix. Based on

such remarks, we identified three main opportunities for improvement: decreasing

modeling complexity, increasing MDD tool integrability, and improving modeling as-

sistance. These identified opportunities for improvement are helpful and relevant to

model-driven engineers—i.e., who develop MDD tools—although more extensive data

gathering is required to validate and generalize the results. In future work, we expect to

replicate this experience with several web crawling and other domain software devel-

opers to validate and improve the identified opportunities.

This experience report is structured as follows: in Section 2, we review the available

MDD tools in the market and we motivate our research question; in Section 3, we in-

troduce the use case designed in collaboration with the Swiss company; in Section 4,

we report the results and the identified opportunities for improvement based on the

software development perception using Mendix; and, finally, in Section 5 we discuss

conclusions and future work.

2 MDD tools overview and motivation

Software specifications are created by conducting analysis, requirement specification,

and design. Conceptual models are used throughout this process to represent the soft-

ware under-development. In code-centric approaches, software developers manually

turn these conceptual models into code. MDD tools propose to go one step further by

using the models as blueprints to automatically generate the code based on such con-

ceptual models [1, 12, 13]. As a result, software development teams improve their

productivity and decrease the software time-to-market.

3

To support such a transformation process, several MDD tools have been developed

and are now available in the market to develop software based on conceptual models.

For instance, OutSystems [2] offers a domain-specific language (DSL) as a fourth-gen-

eration language that provides a graceful fullback to third-generation programming lan-

guages such as C#. Microsoft PowerApps [3] allows companies to create software using

a drag-and-drop editor, integrating such software into the Microsoft ecosystem. Appian

[4] enables businesses to automate their processes, producing mobile-ready applica-

tions integrated into cloud systems without programming. WebRatio [5, 14] offers an

Eclipse-based [15] developing environment for creating web and mobile software ap-

plications by using IFML (Interaction Flow Modeling Language) models. Finally,

Mendix [6] uses a visual editor with its own modeling language to represent business

logic workflows, generating web-based applications.

We observe these MDD tools state that “any” software can be developed by using

them, making statements such as: “anyone with an idea can make powerful apps [6],”

“we accelerate customers’ business by discovering, designing, and automating their

most important processes [4],” “automate your business processes and bring them

online [5],” among others. We observe that the MDD tools delimit the “any” software

idea to specific domains, such as business processes. However, the MDD tools promise

that software developers can develop the software they are used to developing using

models in such specific domains. Therefore, the following research question arises:

(RQ) What is the perception of a software developer in using an MDD tool to de-

velop software he/she is used to develop without models?

3 The use case: Web crawling and MDD tools

We plan to ask a software developer to use one of the MDD tools reviewed in Section

2 and develop a domain-specific use case to address our RQ. We had the opportunity

to collaborate with a Swiss company that offers online services for comparing insur-

ances based on web crawling. Therefore, we select web crawling as our domain-specific

use case. We introduce such a use case in the following paragraph.

The Swiss company uses web crawling to automatically retrieve data about insur-

ances, allowing users to compare them in a single source summarized web page. The

web pages where the Swiss company extracts data are named targets [11]. Sometimes,

the web crawler needs to be rewritten when a new target appears. Therefore, the Swiss

company proposes crawling new targets as soon as is required as the use case. As a

result of developing this use case, the web crawler must collect the data from such a

new target and store it in the database for further processing, as shown in Fig. 1.

Fig. 1. Use case overview.

4

 Having proposed the use case, the next step is selecting an MDD tool to develop it.

As a proof of concept, we selected Mendix from the reviewed MDD tools since it is a

user-friendly tool that allows software developers to kick-start modeling quickly. We

considered other MDD tools; however, they were not that easy to configure and run the

software as Mendix. For instance, Mendix has a web environment that allows software

developers to use the tool as soon as they login into the Mendix website, without any

additional configuration. Other tools, such as WebRatio, require the software develop-

ers to download an IDE (Integrated Development Environment) software and configure

external elements such as databases and web servers, hindering their configuration.

Moreover, Mendix is one of the MDD tool leaders in the market based on the Gartner

Magic Quadrant (see Fig. 2).

Fig. 2. Gartner Magic Quadrant on enterprise low-code application platforms, taken from [16].

4 Results on developing the use case

We ask a software developer from the Swiss company to use Mendix to develop the

use case introduced in Section 3. The software developer has more than four years of

industrial experience, working two years at the Swiss company. The software developer

has enough expertise to develop a web crawler, making him/her a feasible subject to

create a web crawler using Mendix. The software developer invested approximately 40

working hours in developing the use case using Mendix, including learning how to use

the tool itself since it was her/his first time using an MDD tool. As a result, the software

developer created: a domain model containing the information of the web crawler tar-

gets (see Fig. 3); a set of microflow models comprising the business logic (see Fig. 4);

and a graphic user interface for managing the web crawler targets (see Fig. 5).

5

Fig. 3. Web crawler Mendix’s domain model.

Fig. 4. Excerpt of the web crawler Mendix’s microflows.

Fig. 5. Graphical user interface for managing the web crawler targets.

6

We asked the software developer to report on his perception while using Mendix to

conduct the use case, including the design, the development process, and the improve-

ment remarks. Based on the provided information, we concluded that Mendix allowed

the software developer to implement a simplified web crawler based on the results. That

means, although Mendix is a general-purpose MDD tool, the MDD tool provides

enough functionalities to implement domain-specific software, as is a web crawler.

Such a result is an insight for answering our RQ. However, we collected the software

development improvement remarks about developing software using the MDD tool

based on her/his experience. We analyzed such comments to compile them as opportu-

nities in the following paragraphs.

Decreasing modeling complexity: The software developer stated that developing a

simple feature requires several models, increasing the software development complex-

ity. Based on his/her practical experience, the use case functionalities could be devel-

oped in a few lines of code (between 10 to 30 lines of code) on a general-purpose pro-

gramming language such as JavaScript or C#. Therefore, we identified that providing

MDD tools with general-purpose programming languages that allow software develop-

ers to write code and integrate them with the models can overcome such a complex

issue.

Increasing MDD tool integrability: The software developer stated that several

technologies and tools are usually integrated in practice to develop software such as

web crawlers. Such integration allows software developers to increase development

speed using tested and already-implemented functionalities. However, the software de-

veloper state that Mendix has no support for integrating domain-specific technologies

and tools such as Puppeteer [17], a contemporary web crawling tool. Therefore, we

identified that providing MDD tools with integration mechanisms can exploit the ben-

efits of already-implemented technologies and tools, increasing the software develop-

ment speed.

Improving modeling assistance: The software developer stated that he/she per-

ceived some difficulties during modeling in Mendix. Finding references between mod-

els, debugging the microflows, and understanding the modeling syntax are examples of

such problems. Although Mendix has modeling assistants to assist in creating models

such as automatic completion, the software developer state that the modeling assistance

in MDD tools is behind programming assistance in IDEs (Integrated Development En-

vironment). This lack of well-designed and complete modeling assistance negatively

affects the “developer” experience with the MDD tool. Therefore, we identify that im-

proving modeling assistance in MDD tools by creating more complete and user-ori-

ented modeling assistance can overcome such difficulties.

5 Conclusions and future work

Several MDD tools are available in the market, promising that software development

teams can fast and easily develop any software by using them. However, what is the

perception of a software developer in using an MDD tool to create software he/she is

used to develop without models? We propose a use case in collaboration with a Swiss

7

company that allows users to compare insurances based on web crawling to address this

question. We reviewed a set of available MDD tools and selected Mendix, a user-

friendly and easy to configure MDD tool, to develop such a use case. Then, we ask an

experienced software developer at the Swiss company to develop the use case. Alt-

hough the software developer had no experience using MDD tools, we observed he/she

successfully developed a simplified web crawler using Mendix. These results provide

data for answering our RQ since, at least in this context, the selected MDD tool has

enough functionalities to implement a web crawler. Finally, we collect the software

developer remarks during the use case development using the MDD tool. As a result,

we outlined three opportunities for improvement based on his/her experience: decreas-

ing modeling complexity, increasing MDD tool interoperability, and improving mod-

eling assistance.

Although this experience report’s results are helpful, we know it is not feasible to

generalize them based on just one software developer’s perception, one specific do-

main, and one specific MDD tool. Thus, we plan to replicate this experience with other

software developers, including domain-specific use cases in collaboration with other

industrial partners. Currently, we have industry partners that can bring such domain-

specific use cases to us, mainly focused on: software testing, data-centric applications,

and car racing simulators. These efforts will bring us data for generalizing our results,

arising new opportunities to improve the MDD tools.

Acknowledgments

Our research is supported by the Zürich University of Applied Sciences (ZHAW) –

School of Engineering: Institute for Applied Information Technology (InIT); and the

Innosuisse Flagship Initiative - Project SHIFT.

References

1. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven soft-

ware development. IEEE Software. 20, 42–45 (2003).

2. OutSystems Home Page, https://www.outsystems.com, last accessed 2022/03/04.

3. PowerApps Home Page, https://powerapps.microsoft.com/en-us/, last accessed 2022/03/04.

4. Appian Home Page, https://appian.com, last accessed 2022/03/04.

5. WebRato Home Page, https://www.webratio.com/site/content/es/home, last accessed

2022/03/04.

6. Mendix Home Page, https://www.mendix.com, last accessed 2022/03/04.

7. Jia, X., Jones, C.: AXIOM: A model-driven approach to cross-platform application develop-

ment. ICSOFT 2012 - Proceedings of the 7th International Conference on Software Paradigm

Trends. 24–33 (2012).

8. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: Model-Driven Development of Cross-Plat-

form Mobile Applications with Web Ratio and IFML. Proceedings - 2nd ACM International

Conference on Mobile Software Engineering and Systems, MOBILESoft 2015. 170–171 (2015).

9. Rieger, C.: Business apps with MAML. In: Proceedings of the Symposium on Applied Com-

puting. pp. 1599–1606. ACM, New York, NY, USA (2017).

8

10. Rosales-Morales, V.Y., Sánchez-Morales, L.N., Alor-Hernández, G., Garcia-Alcaraz, J.L.,

Sánchez-Cervantes, J.L., Rodriguez-Mazahua, L.: ImagIngDev: A New Approach for Develop-

ing Automatic Cross-Platform Mobile Applications Using Image Processing Techniques. Com-

puter Journal. 63, 732–757 (2020).

11. Khder, M.: Web Scraping or Web Crawling: State of Art, Techniques, Approaches and Ap-

plication. International Journal of Advances in Soft Computing and its Applications. 13, 145–

168 (2021).

12. Liddle, S.W.: Model-Driven Software Development. In: Handbook of Conceptual Modeling.

pp. 17–54. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).

13. Sahay, A., Indamutsa, A., di Ruscio, D., Pierantonio, A.: Supporting the understanding and

comparison of low-code development platforms. In: 46th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA). pp. 171–178. IEEE (2020).

14. Brambilla, M., Butti, S., Fraternali, P.: WebRatio BPM: A Tool for Designing and Deploying

Business Processes on the Web. Presented at the (2010).

15. Geer, D.: Eclipse becomes the dominant Java IDE. Computer (Long Beach Calif). 38, 16–18

(2005).

16. Gartner, I.: Gartner Magic Quadrant for Enterprise Low-Code Application Platforms. (2021).

17. Puppeteer GitHub Repository, https://github.com/puppeteer/puppeteer, last accessed

2022/03/06.

